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Abstract— Breast cancer stands as a formidable global health 

challenge, substantially impacting cancer-related mortality rates. 

Ultrasound (US) imaging has gained prominence in breast cancer 

diagnosis, particularly for individuals with dense breast tissue. 

However, the efficacy of US imaging is reliant on operator 

proficiency and is susceptible to noise, posing a substantial 

diagnostic hurdle. In this study, we have devised an automated 

ultrasound-based Computer-Aided Diagnosis (CAD) system 

designed to detect and classify breast cancer lesions. A dataset 

comprising 6,319 images from 2889 patients was employed. To 

ensure the generalizability of our AI algorithm, images were 

acquired using various US machines with different transducers (1-

14 MHz). Deep learning methodologies were harnessed, 

encompassing the utilization of the EfficientNetV2-B0 architecture 

for image classification (benign/malignant) and the 

implementation of the Attention U-Net coupled with the Cosh log 

Dice loss function for breast lesion segmentation. Our CAD system 

demonstrated an impressive sensitivity of 89.0% and specificity of 

92.0% for classification, along with a segmentation Dice score of 

86.0%. The integration of such CAD systems into breast imaging 

workflows holds promise for diminishing the influence of human 

errors, consequently reducing diagnostic costs, and expediting the 

breast US imaging process. 
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I.  INTRODUCTION  

Breast cancer represents a significant global health 
challenge, being the most prevalent cancer and a leading cause 
of cancer-related mortality among women worldwide [1]. 
According to the American Cancer Society, when breast cancer 
is detected early, the 5-year relative survival rate is 99% [2]. 
Given that Full-Field Digital Mammography (FFDM) is the 
gold-standard in breast cancer screening since it offers the 
benefits of high specificity in detecting suspicious masses and 
microcalcifications. However, it uses radiation and is not always 
effective for dense breast tissue. On the other hand, Breast 

Ultrasound (BUS) is affordable, safe (no radiation), and good at 
detecting dense breast tissue [3]. Currently, the evaluation of 
BUS heavily relies on subjective assessments by sonographers. 
However, ultrasound's diagnostic precision is constrained by the 
availability of specialized sonographers, and even seasoned 
professionals often show substantial variation in their 
assessments. To tackle these issues, computer-aided diagnosis 
(CAD) systems have emerged to aid sonographers in achieving 
more efficient and precise breast cancer diagnoses [4][5]. The 
recent advancements in deep learning (DL) models have further 
elevated the performance of these diagnostic models, surpassing 
the capabilities of expert sonographers [6]. Hence, this research 
endeavors to create a robust CAD system for BUS imaging that 
can be valuable adjunct to medical professionals, increasing their 
diagnostic capabilities and expediting the diagnosis process to 
ensure timely treatment for patients. 
 The field of DL offers various methodologies for segmenting 
BUS images. Researchers have explored diverse techniques. For 
instance, Vakanski et al. [7] harnessed the expertise of 
radiologists by incorporating visual saliency maps as input to an 
attention block and achieved a dice score of 90.5% on a small 
dataset of 510 images. Shareef et al.[8] expanded upon the basic 
U-net by introducing dual encoders, facilitating robust 
segmentation for lesions of varying sizes through a row-column-
wise segmentation approach and achieved a dice score of 87% 
on a small dataset of 562 images and 75.9% on another dataset 
contains 163 images. Meanwhile, Zhao et al. [9] proposed the 
use of ResU-net, specifically designed to mitigate the issue of 
vanishing gradients. They integrated an attention mechanism 
and employed different loss functions to optimize segmentation 
outcomes and achieved a dice score of 92.1%. Whereas for 
breast cancer classification, Mo. et al. [10] proposed a new 
approach to use the sequential data analysis nature of the 
transformer and extracts the inter- and intra-layer spatial 
information horizontally and vertically and achieve high results 
in classification of BUS in different dataset their highest result 
was an AUC of 92.4% on a big dataset contains 2405 images. In 
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[11] Nguyen. et al investigated the efficiency of applying 
different augmentation techniques and used EfficientNetV2 and 
compared it to Fully Connected Network, shallow Convolutional 
Neural Networks and EfficientNetV2 model achieved an AUC 
of 79.8% without augmentation and 80.4% on a small dataset of 
780 images.  
 In this study, we present a comprehensive workflow for 
breast lesion analysis, spanning from precise lesion 
segmentation to subsequent classification. Our research 
significantly contributes to the field by streamlining the 
diagnostic process with an integrated approach that ensures 
consistency and adherence to established standards. We further 
bolstered the robustness and generalizability of our models by 
curating a substantial and diverse breast ultrasound dataset 
dataset with approximately 6319 images, amalgamating data 
from multiple sources for rigorous training and validation. This 
approach equips our models to perform reliably across various 
clinical scenarios and patient populations, underpinning the 
practicality of our findings. Moreover, we introduced novel 
techniques, including the Log Cosh Dice loss function in tandem 
with the Attention U-net for lesion segmentation, which 
exhibited smoother convergence dynamics compared to 
traditional methods. Additionally, the incorporation of the 
EfficientNetV2-B0 model for lesion classification markedly 
improved model performance. Furthermore, our fine-tuning of 
the classification model specifically for ultrasound images 
represents a noteworthy advancement in breast ultrasound 
(BUS) image analysis, contributing to the ongoing refinement 
and progress of diagnostic methodologies in this critical domain.  

II. MATERIALS AND METHODS 

A. Datasets 

In this work, we used 5 different datasets with different class 
distribution as shown in Table I, different transducers with 
different acquisition frequencies, four of them are public access 
data and one of them is private access data. A brief description 
of each dataset is as follows: 

TABLE I.  DATASETS DISTRIBUTION 

 
1) BUSI [12] consists of a total of 780 BUS images from the 
Baheya 1  Hospital for Early Detection and Treatment of 
Women’s Cancer, Cairo, Egypt. They were acquired with GE 
LOGIQ E9 using 1-5 MHz ML6-15-D Matrix linear probe. 
Furthermore, each image has the pixel-level ground truth of the 
lesion which was manually annotated by radiologists. 
2) UDIAT [13] contains a total of 163 BUS images acquired 
with Siemens ACUSON Sequoia C512 using 8.5 MHz 17L5 HD 
linear array probe. All the images were collected from the 
UDIAT Diagnostic Centre of the Parc Tauli Corporation, 
Sabadell, Spain. 

 
1 The official Baheya website: https://baheya.org/en 

3) OASBUD [14] contains 200 ultrasound scans (2 orthogonal 
scans each) acquired by Ultrasonix SonixTouch using 5-14 MHz 
L14-5/38 linear array probe.. 
4) GDPH&SYSUCC [10] consists of a total of 2405 images, 
acquired by Hitachi Ascendus, Mindray DC-80, Toshiba Aplio 
500 and Supersonic Aixplorer. All the images were labeled as 
benign or malignant according to the pathology report.  
5) The last dataset were collected by our team and it consists of 
2771 images acquired from RS80A, Samsung Electronics using 
7-10 MHz linear probe. All the images were collected based on 
Institutional Review Board (IRB) with the Women and Fetal 
Imaging (WAFI) Center located in Cairo, Egypt [15]. 

B. Data Preprocessing 

Ultrasound images are commonly afflicted by issues such as 
speckle noise [16], high variability, and complex features. 
Preserving essential features while eliminating noise is 
paramount. To address this, we employed bilateral filtering, 
which effectively removes noise while preserving image edges. 
Additionally, in some datasets, ultrasound images are 
encumbered by black borders. To ensure that our models are fed 
only pristine ultrasound images devoid of these borders, we 
introduced a novel algorithm that employs boundary tracing for 
black border removal. Subsequently, we applied adaptive 
histogram equalization to enhance contrast, followed by image 
resizing, which will be discussed further in subsequent sections. 
Furthermore, the datasets exhibited significant class imbalance, 
as depicted in Table I. To facilitate unbiased and accurate 
classification, we adopted four augmentation methods [17]: 
translation, blurring, rotation, random contrast adjustments, and 
gamma correction. These methods not only address class 
imbalance but also ensure that augmented images remain 
sufficiently dissimilar from the original training set, thereby 
mitigating the risk of model overfitting while preserving the 
essential properties of ultrasound images. 

C. Classification 

We employed a transfer learning approach, utilizing the 

EfficientNetV2-B0 architecture [18], which comprises a total of 

270 layers. To optimize model training, we initially froze 90 

layers of the pre-trained model, removed the top layer, and 

replaced it with two layers: a global max pooling layer and an 

output classification layer with softmax activation. Fine-tuning 

of the pre-trained model was then meticulously carried out to 

achieve optimal results and ensure model generalization. In our 

hyperparameter exploration, we conducted a systematic search 

and found that the most effective parameters were an input shape 

of 224x224, utilization of ImageNet weights, a batch size of 16, 

and the implementation of a decaying cyclic learning rate 

schedule in conjunction with the SGD optimizer. This 

combination yielded the best performance metrics, including 

AUC, specificity, cross-entropy loss, and sensitivity, as assessed 

on the test set.  

Additionally, it was imperative to address class imbalance in 

the input training data to facilitate unbiased learning of correct 

features. Our training data consisted of datasets such as BUSI, 

 

Dataset  Benign   Malignant  Normal 

BUSI 210 437 133 

UDIAT 109 54 - 

OASBUD 104 96 - 

GDPH&SYSUCC 886 1519 - 

Own Dataset 2370 401 - 

Total 3679 2507 133 

https://baheya.org/en


UDIAT, OASBUD, GDPH, and SYSUCC. The combined 

dataset was split into training (80%), validation (10%), and test 

(10%) subsets. To balance the training dataset, we employed 

data augmentation techniques. The classification model was 

trained for a total of 14 epochs, with early stopping mechanisms 

in place to mitigate overfitting. 

D. Segmentation 

 In our segmentation analysis, we employed the Attention U-

net architecture with the Log Cosh dice loss function and 

compared the results against those obtained using the Combo 

loss function for lesion segmentation. Furthermore, we explored 

the use of U-net with various backbone networks to scrutinize 

the distinct characteristics of these two loss functions. 

To ensure equitable comparisons, we rigorously conducted 

hyperparameter tuning for both loss functions. Critical 

hyperparameters for the segmentation model included the 

choice of backbone network, input shape (128x128), batch size 

(32), learning rate, optimizer (Adam), and the selection of the 

loss function (Log Cosh dice loss or Combo loss). Our objective 

was to identify the optimal hyperparameter configurations for 

each loss function to maximize model performance. 

These experiments were conducted on three distinct 

datasets: BUSI, SYSUCC, and our proprietary dataset. To 

address class imbalance in the training dataset, we employed 

augmentation techniques. The models underwent training for a 

total of 75 epochs, with the weights yielding the best 

performance on the validation dataset being saved for further 

analysis. 

III. RESULTS 

The performance of two loss functions including the Log 

Cosh dice loss and Combo loss was compared for lesion 

segmentation in BUS images. The U-net architecture was 

adopted with various backbone networks including Resnet34, 

DenseNet121, Efficientnetb0, and Attention U-net to assess 

these loss functions comprehensively. 

Table II shows the Dice Similarity Scores (DSC) for different 

loss functions across various models. The Attention U-net with 

Log Cosh dice exhibited the highest DSC scores in both the 

validation (0.86) and test sets (0.85).  

Fig. 1. ROC curve of classification model EfficientNetB0 

Both models EfficientNetV2-B0 and DenseNet121 exhibited 

good performance to classify BUS images. As described in 

Table III but we decided to opt for EfficientNetV2-B0 because 

it is more efficient in terms of both model size and computational 

resources. The model exhibited a 0.87 F1 score, sensitivity of 

0.89 and a specificity of 0.92, signifying its effectiveness in 

capturing subtle variations in BUS images. The (AUC) curve 

reached an exceptional value of 0.96 as shown in Fig. 1 

reinforcing its robust discriminative capabilities. These results 

demonstrate the efficacy of the proposed classification 

framework. Table IV exhibits the performance of the 

classification model trained and tested on each dataset. 

TABLE II.  EVALUATION METRICS FOR SEGMENTATION  

TABLE III.  EVALUATION METRICS FOR CLASSIFICATION 

TABLE IV.  CLASSIFICATION RESULTS OF EFFCIENTNETV2-BO ON EACH 

DATASET 

Furthermore, we tested the feasibility of utilizing Explainable 
Artificial Intelligence (XAI) to enhance the interpretability of 
our classification model. The Grad-CAM [19] technique was 
adopted to visualize the morphological features of the lesions 
that contributed most significantly to the model's predictions as 
we see in Fig. 2 the model learns to extract the irregularity of 
lesion geometry feature of malignant images and distinguish it 
from regular ellipsoid geometry lesions of benign images. 

Fig. 2. Grad CAM explaining network interpretability for the classification 

model. 

IV. DISCUSSION 

In this study, we developed a CAD system for classifying 
BUS images and segmenting breast lesions, which performed 
exceptionally well in overcoming ultrasound artifacts.  

While we aimed to diversify our datasets, including 
variations in modalities, frequency, and operators, we  

Model Loss Val DSC Test DSC 

U-net with ResNet34 backbone Log Cosh dice  0.84 0.85 

U-net with ResNet50 backbone Combo loss 0.84 0.83 

Attention U-net Combo loss 0.85 0.84 

Attention U-net Log Cosh dice 0.86 0.85 

Model Acc 
 F1 

Score 
Sensitivity  Specificity AUC 

VGG16 76 76 63.6 82.8 90.1 

MobileNet 83 83 70.6 88 94.8 

DenseNet121 89 89 89.1 92.5 97 

EfficientNet 

B0 

86 86.2 79.4 91.2 96.5 

EfficientNetV

2-B0 

89 87 89 92 96 

Dataset Acc 

 F1 

Scor

e 

Sensitivity  
Specificit

y 
AUC 

BUSI 86.0 85.8 86.7 92.0 93.75 

UDIAT 98.0 98.0 95.0 96.4 98.0 

OASBUD 71.0 70.5 69.0 68.5 81.7 

GDPH&SYSUCC 90.0 90.0 88.5 88.3 96.0 



Fig. 3.  Generalization of the Segmentation model output mask on different 
lesion shapes and size 

acknowledge the need for a larger and more diverse dataset for 
comprehensive validation, emphasizing collaborative efforts for 
dataset curation. We addressed class imbalance using weighted 
loss functions, compared our model's performance with 
established ones, showing promising results in BUS image 
classification. XAI as shown in Fig. 2 ensured that AI-driven 
decisions in the medical domain are explainable and trustworthy. 
As we see our model exhibited robustness in distinguishing 
lesion boundaries from acoustic shadowing. We evaluated our 
model on both combined and individual datasets. Notably, it 
performed well on all datasets, with the highest accuracy 
observed on high-resolution datasets (Table IV). These results 
confirm the model's capacity for unbiased generalization across 
diverse datasets. 

We also compared two loss functions for breast lesion 
segmentation, utilizing U-net architecture with various 
extensions. Both Log Cosh dice loss and Combo loss performed 
well, with a slight advantage observed in the Attention U-net 
with Log Cosh dice loss showing that the model effectively 
generalizing over the diverse characteristics of the lesion as 
shown in Fig. 3. 

 We recognized limitations related to training data variations 
and recommended standardized annotation protocols for more 
accurate ground truth. Overall, our work highlighted the 
importance of data sharing, quality assurance, and model 
adaptability in advancing breast ultrasound image analysis. 
Future research should focus on addressing these challenges to 
improve clinical outcomes in breast cancer assessment using 
BUS. 

V. CONCLUSIONS 

 In conclusion, we presented a comprehensive exploration of 
breast ultrasound image analysis, encompassing both 
classification and lesion segmentation. For classification, our 
EfficientNetV2-B0-based model has demonstrated exceptional 
accuracy and diagnostic performance, outperforming established 
models. Holding promises for improving the early detection of 
breast cancer. In the context of lesion segmentation, our 
approach has shed light on the importance of selecting an 
appropriate loss function. Log Cosh dice loss, in conjunction 
with the Attention U-net model, emerged as a powerful 
combination for capturing lesion areas accurately. These 
contributions advance the field of breast ultrasound image 
analysis, and we anticipate that they will pave the way for more 
efficient breast cancer diagnosis methods. 
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